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Quasicrossing distribution as a signature of the onset of chaos in the SU(3) nuclear model
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The transition from the regular to the chaotic regime in a simple model has been studied by two
different methods: the stability matrix and the quasicrossing distribution. Good agreement between the

two methods was obtained.

PACS number(s): 05.45.+b, 03.65.Sq, 24.60.—k

In the past few years many authors, working in
different fields, have shown great interest in the so-called
“quantum chaos” or “quantum chaology,” i.e., the signa-
ture in quantal systems of the chaotic properties of the
corresponding (%i—0) semiclassical Hamiltonian [1,2].

In this spirit we compare in this paper the results ob-
tained by two different approaches: a classical one based
on the stability matrix and two quantal criteria using the
distribution of quasicrossings and the A? statistics.

The model used is the three-level Lipkin-Meshow-
Glick one [3,4], whose Hamiltonian is

H=3 ¢6.-~L 3 G2 (1)
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are the generators of the SU(3) group. This model de-
scribes M identical particles in three, M-fold degenerate,
single-particle levels ;. Like the authors of Refs. [3,4]
we assume €, = —g;,=€=1, £,=0, a vanishing interaction
for particles in the same level and an equal interaction for
particles in different levels.
The classical Hamiltonian H ,, given by

H,= lim <SU(3)

M—

H
M

SU(3)> ) (3)

where |SU(3)) is the coherent state, has been discussed
in great detail in [3,4] and may be written as

H,=—1+1g3(1—)+1q32—x)+1ipi(1+x)+1p3(2+x)

+1x[(g3+43)—(pi+p3)—(g1 —p1)q}—p3)—44:9:01P,] )

where Y=MV /e. The phase space Q is a compact
hypersphere with the equation g% +¢3+p3+p3 <2.

In order to analyze the stability of the system, we cal-
culated the periodic orbits of this model using Hamilton’s
equations of (4):

z=JVH,(z,x), (5)
where

2=(q1,92,P1>P2) »

and J is the 4 X4 symplectic matrix:
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where I is the 2 X2 identity matrix.
If w is a vector of the tangent space T}, of the phase-
space manifold (1 at z, its time evolution is given by

9*H(z)
— 5 W.

w=J
dz?

0))

By (5) and (7) the Lyapunov exponents can be calculat-
ed [5]:

Mz)= lim L1n|w(?)| . @)

t—>ow t

In terms of the stability matrix M (0,t), defined in the
usual way,
_0z;(2)

M, (0,1)= 9z;(0) ’

9)
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A(z) can be written as

AMz)= lim Lin|M(0,1)], (10
t— 0
where |M(0,¢)| is the norm of the matrix M(0,¢). This
matrix can be calculated by solving its equations of
motion:

. 2
pm=y3H2) an
dz
with the initial conditions
M(0)=I, (12)

where I is the 4X4 identity matrix. The calculation of
the Lyapunov exponents is related to that of the eigenval-
ues o; of the matrix M(0,7T):

Ai(z)=—lno,; . (13)

1
T
Now, using the unitary nature of M, a periodic orbit is
unstable if

Tr(M)>4 or Tr(M)<O0 (14)
and stable if
0<Tr(M)<4. (15)

It is also interesting to study the change of stability of
periodic trajectories as a function of the coupling con-
stant . In Fig. 1 the ratio between the number of stable
orbits and the number of total orbits with period T <30
is plotted versus Y. For the coupling constant
X €(0,3]T;, =3, as shown in Ref. [6]. As can be seen,
the sensitivity of the orbits to a small change of Y is quite
different for different values of Y, reflecting the transition
order—chaos as the coupling constant increases. In-
cidentally, the results shown in Fig. 1 are the generaliza-
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FIG. 1. Ratio between the number of stable periodic orbits
and the number of total periodic orbits vs ), with T <30;
Tmin:3'

tion of those discussed in [6,7]. In fact, in the papers
mentioned above, we limited ourselves to three different
families of short periodic orbits with the initial condition
along the axis q,, g, and near the static potential minima.

In order to apply the quantal criteria to our system, the
eigenvalues of Hamiltonian (1) must be calculated. A
natural basis can be written |bc ), meaning b particles in
the second level, ¢ in the third, and, of course, M —b —c
in the first level; in this way |00) is the ground state with
all the particles in the lowest level. We can write the gen-
eral basis state as

1 172
lbe )= ' ‘ G5,G5,100) , (16)

blc!

where V'1/b!c! is the normalizing constant.

From the commutation relation of G; we can calculate
expectation values of H/M and thus, eigenvalues and
eigenstates of H/M; in this way the energy spectrum
range is independent of the number of particles:

. H _ 1
(be’l 3 lbe) = (=M +b+20)8dee = S5 O »

(17)
where

Qprer b =Vb(b —1)(M—b—c+1)(M—b—c+2)8, 3 8.

+V (b +1)(b +2) M —b—c)(M —b—c —1)8; 12 55
+Vele—1)(M —b—c+ (M —b—c +2)8, ,,8, 5

+Vi(c+1)c+2)M —b—c)(M—b—c—1)8, 8.4,

+Vb +1)(b +2)c(c —1)8y 4548, g+ VBB —1)c +1)c +2)8, 54842, -

The expectation vaiues { H /M ) are real and symmetric.
For any given number of particles M, we can set up the
complete basis state, calculate the matrix elements of
(H /M), and then diagonalize { H /M ) to find its eigen-
values. (H /M ) connects states with Ab=—2,0,2 and
Ac=—2,0,2 only, which simplifies matters. States with
b,c even; b,c odd; b even and c odd; b odd and ¢ even are
grouped together. Thus ( H/M ) becomes block diago-
nal, containing four blocks that can be diagonalized sepa-
rately; these matrices are referred to as ee, 00, oe, and eo.

[

When the parameter Y =0 the Hamiltonian consists of
two oscillators and there are many degeneracies, but for
x70 these degeneracies are obviously broken.

For a large number of particles (semiclassical limit), we
calculated the density of quasicrossings outside the de-
generacy region as a function of the parameter Y:

AN
p(x) Ay (18)

where AN is the number of quasicrossings in the parame-
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ter range AY=0.01. To obtain AN we fixed three values 2 C
X —Ax, X, and ¥+ Ay and imposed that N (d)
si(x—AY)>s5;(x) , (19) b
si(x+AY)>s5:(x) (20) . Ll “
0.0
where st(X)=Et+l(X)_Et(X)'
The results (Fig. 2) show a maximum of quasicrossing 2 [
for y=2 for all classes, in agreement with the transition - (c)
to chaos of Fig. 1. .k
In order to study the sensitivity of energy levels to 2 r
small changes of the parameter Yy we used the statistics A%(E) [
A%E), defined in the usual way [8]: 0.0 L
AYE)=|E,(x+Ax)+E(x—Ax)—2E,(x)| , (1) 2,

(b)
which measures the curvature of E; in a small range Ay.
To remove the secular variation of the level density, each
spectrum was mapped into one which has a constant level
density by a numerical procedure described in Ref. [9]. 0.0
Figure 3 shows A% E) for different values of y; we note
that the maximum value of A%(E) corresponds to the
X =2 value.

In conclusion, in the study of the transition from order

T T T T 1T T 71T

(a)

TTTT

to chaos, there is, in agreement with the authors of 0.0 Lot v .
[10,11], a good correspondence between the classical ap- 0.0 S00. 1000.
proach, based on the stability matrix and Lyapunov ex- Energy (a.u.)

ponents, and the quantal one, based on the quasicrossing
distribution and the A? statistics.

For the sake of completeness in Fig. 4 the distribution
P(S) of spacings S between adjacent levels for the eo class
(nearest-neighbor spacing distribution) has been calculat- 1.0

FIG. 3. AXE) vs E for different values of y for the eo class;
M=102; (a) x=0.5, (b) x=2, (c) x=3, (d) y=5.

ed and compared to the Brody distribution [12,13]:
(e)
P(S)=a(g+1)S%xp(—aS?t!), (22)
with
0.0 A4l iaa 0l
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L ee L 00
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FIG. 2. Density of quasicrossings vs Yy for all classes (e FIG. 4. P(S) vs S for different values of y for the eo class;

denotes even and o denotes odd). M=102; (a) x=0.75, (b) x=2, (c) x=3.
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+2 g+1 smooth transition from the regular to the chaotic regime
a= (T -q—Tl— , 0<¢q¢=<1. (23)  discussed in the paper.
q

The distribution (22) interpolates between the Poisson
distribution (¢ =0) and the Wigner distribution (g =1).
As can be seen from Fig. 4 this statistic also confirms the
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